	Q.P. Code: 20ME0315	R	20								
	Reg. No:										
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY PI	TTUR									
(AUTONOMOUS)											
	B.Tech III Year I Semester Regular Examinations March-2023	,									
	(Mechanical Engineering)										
	Time: 3 hours	lax. Ma	urks: 6	0							
	(Answer all Five Units $5 \ge 12 = 60$ Marks)										
1	a What is Fourier's law of conduction? State the assumption and essential feature	CO1	L1	6M							
	of it. b Define the following terms	CO1	12	6M							
	i)Thermal Conductivity ii) Thermal Resistance	GOI	LZ	OIVI							
	OR										
2	a Distinguish between conduction, convection and radiation modes of heat transfer.	CO1	L4	6M							
	b Calculate the rate of heat transfer per unit area through a copper plate 45 mm thick, whose one face is maintained at 350 °C and the other face at 50 °C. Take thermal conductivity of copper as 370 W/m °C	CO1	L1	6M							
3	a Derive the expression for the overall heat transfer coefficient for a composite Wall.	CO2	L3	6M							
	b What is lumped system analysis? Derive the expression for it. OR	CO2	L3	6M							
4	a Calculate the critical radius of insulation for asbestos ($k = 0.172$ W/m K) surrounding a pipe and exposed to room air at 300 K with $h = 2.8$ W/m K. Calculate the heat loss from a 475 K, 60 mm diameter pipe when covered with the critical radius of insulation and without insulation.	CO2	L4	6M							
	b What is lumped system analysis? Derive the expression for it.	CO2	L4	6M							
5	In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 m/s. The tube surface temperature is maintained at 70 °C and the following water is heated from the inlet temperature 15 °C to an outlet temperature of 45 °C. taking the physical properties of water at its mean bulk temperature, Calculate the following:	CO3	L4	12M							
	i.) The heat transfer coefficient from the tube surface to the waterii) The heat transferrediii) The length of the tube										
	OR										
6	A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if $\rho = 1.025$ kg/m3, $v = 15.06$	CO3	L3	12M							

x10-6 m 2 /s, cp = 0.96 kJ/kg $^\circ$ C and k = 0.0892 kJ/mh 0C and β =1/298 K-1V. Assume Nu=0.12(Gr.Pr)^{1/3}

	Q.P. Code: 20ME0315			R20		
			UNIT-IV			
7	a Expl	ain bri	efly the various regimes of saturated pool boiling with diagram.	CO4	L2	6M
	b Wha	at are t	he applications of boiling and condensation process? OR	CO4	L1	6M
8	a Expl	ain Ste	fan Boltzmann Law, Kirchhoff 's Law.	CO4	L4	6M
	b Diffe	erentia	te between the mechanism of film wise and drop wise condensation. UNIT-V	CO4	L4	6M
9	Derive case of	the exparalle	pression for Logarithmic Mean Temperature Difference (LMTD) in el flow.	CO5	L3	12M
		1	OR			
10	Explain	n fick's	law of diffusion with a neat diagram.	CO5	L3	12M
			*** LUID ***			
			TTT END TTT			
			ductivity of copper as 370 Wige C			