\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 HEAT AND MASS TRANSFER

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 60
(Answer all Five Units $5 \times 12=60$ Marks)

UNIT-I

1 a What is Fourier's law of conduction? State the assumption and essential feature
of it.
b Define the following terms
$\begin{array}{ll}\text { i)Thermal Conductivity } & \text { ii) Thermal Resistance }\end{array}$
2 a Distinguish between conduction, convection and radiation modes of heat transfer.
b Calculate the rate of heat transfer per unit area through a copper plate 45 mm
thick, whose one face is maintained at $350{ }^{\circ} \mathrm{C}$ and the other face at $50^{\circ} \mathrm{C}$. Take thermal conductivity of copper as $370 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$

UNIT-II

3 a Derive the expression for the overall heat transfer coefficient for a composite Wall.
b What is lumped system analysis? Derive the expression for it.
OR
4 a Calculate the critical radius of insulation for asbestos ($k=0.172 \mathrm{~W} / \mathrm{m} \mathrm{K}$) surrounding a pipe and exposed to room air at 300 K with $\mathrm{h}=2.8 \mathrm{~W} / \mathrm{m} \mathrm{K}$.
Calculate the heat loss from a $475 \mathrm{~K}, 60 \mathrm{~mm}$ diameter pipe when covered with the critical radius of insulation and without insulation.
b What is lumped system analysis? Derive the expression for it.

UNIT-III

5 In a straight tube of 60 mm diameter, water is flowing at a velocity of $12 \mathrm{~m} / \mathrm{s}$. The tube surface temperature is maintained at $70^{\circ} \mathrm{C}$ and the following water is heated from the inlet temperature $15{ }^{\circ} \mathrm{C}$ to an outlet temperature of $45{ }^{\circ} \mathrm{C}$. taking the physical properties of water at its mean bulk temperature, Calculate the following:
i.) The heat transfer coefficient from the tube surface to the water
ii) The heat transferred
iii) The length of the tube

OR

6 A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of $36.5{ }^{\circ} \mathrm{C}$. The surrounding temperature is $13.5^{\circ} \mathrm{C}$. Find out the amount of heat to be generated by the body per hour if $\rho=1.025 \mathrm{~kg} / \mathrm{m} 3, \mathrm{v}=15.06$ $x 10-6 \mathrm{~m} \mathrm{2} / \mathrm{s}, \mathrm{cp}=0.96 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and $\mathrm{k}=0.0892 \mathrm{~kJ} / \mathrm{mh} 0 \mathrm{C}$ and $\beta=1 / 298 \mathrm{~K}-1 \mathrm{~V}$. Assume $\mathrm{Nu}=0.12(\mathrm{Gr} . \mathrm{Pr})^{1 / 3}$

UNIT-IV

7 a Explain briefly the various regimes of saturated pool boiling with diagram. CO4 L2 6M
b What are the applications of boiling and condensation process?OR
8 a Explain Stefan Boltzmann Law, Kirchhoff"s Law. CO4 L4 6M
b Differentiate between the mechanism of film wise and drop wise condensation. CO4 L4 6M
UNIT-V
9 Derive the expression for Logarithmic Mean Temperature Difference (LMTD) in CO5 L3 12Mcase of parallel flow.
OR
10 Explain fick's law of diffusion with a neat diagram.CO5 L3 12M

